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Recent experiments on convection in binary mixtures have shown that the interaction between
localized waves (pulses) can be repulsive as well as attractive and depends strongly on the relative
orientation of the pulses. It is demonstrated that the concentration mode, which is characteristic
of the extended Ginzburg-Landau equations introduced recently, allows a natural understanding of
that result. Within the standard complex Ginzburg-Landau equation this would not be possible.
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Convection in binary mixtures exhibits extremely rich
dynamics. Among the most striking features are localized
wave packets which form stable, particlelike entities drift-
ing through the system. They have been studied experi-
mentally in great detail resulting in a large body of data
[1-8]. On the theoretical side these results have raised
a number of questions regarding their shape, regime of
existence, stability, and drift velocity, which have been
addressed by a number of authors employing full numer-
ical simulations of the Navier-Stokes equations [9,10] as
well as analytical and numerical studies of the complex
Ginzburg-Landau equation (CGL) [11-14]. The simula-
tions of the Navier-Stokes equations were able to repro-
duce various features of the experimental pulses and gave
detailed insight into the concentration field which causes
the oscillatory dynamics of the convection. The studies
of the CGL showed that dispersion can provide a mech-
anism for the observed localization of the waves.

It has been pointed out, however, that various impor-
tant qualitative features of the pulses cannot be captured
within the CGL. Among them is the anomalously slow
drift of the pulses and their stability behavior. In previ-
ous work I suggested that this is due to the relevance of a
concentration mode which becomes an independent dy-
namical variable for the small mass diffusion in the liquids
employed [15]. Based on this observation I derived a set
of extended Ginzburg-Landau equations (ECGL’s) which
are characterized by an additional field, a slow concen-
tration mode. Various analytical and numerical analyses
showed that this extension is able to account for the dif-
ficulties discussed above regarding the dynamics of single
pulses [15-19]. In the present communication I discuss
an additional difficulty which arises in the description of
the interaction between pulses.

An interesting set of experiments deals with the inter-
action of pulses in head-on and tail-on collisions [6]. It
has been found that both types of collisions can result in
stable bound pairs of pulses. In these experiments use is
made of the fact that the drift velocity depends on the
Rayleigh number and can in fact become opposite to the
phase velocity (“backward” drifting pulse). To discuss
the experimental results it is useful to call the “head” of
a pulse that side towards which the waves travel inside
the pulse. There are then two types of pairs consist-
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ing of counterpropagating pulses: those touching with
their heads (“HH”) and those touching with their tails
(“TT”). In the experiments both types were found to be
stable over a range of parameters. The HH pairs are only
stable if the drift velocity of the pulses pushes them to-
gether. Thus the pulses in such a pair experience only a
repulsive interaction. In the TT pairs the pulses exhibit
a repulsive interaction at small distances; at larger dis-
tances, however, an attractive interaction can clearly be
identified (see Figs. 16 and 17 in [6]) which may bind the
pulses together even if their drift velocity tends to pull
them apart. In the experimentally investigated regime
this interaction was found to be very weak.

Within the conventional complex Ginzburg-Landau
equations the pulse interaction arises from a complex
cubic cross-coupling term (g, see below). Its real part
induces a renormalization of the growth rate of one wave
by the other. Its imaginary part affects the frequency
(cross-phase modulation). In the regime of interest, the
real part is negative, i.e., counterpropagating waves sup-
press each other. For pulses this leads naturally to a re-
pulsive interaction. The imaginary part also contributes
to the interaction. In the limit of vanishing dissipation,
i.e., for coupled nonlinear Schrodinger equations, it has
been shown that the cross-phase modulation can lead to
stably bound pulse pairs if it has the correct sign [20,21].
In a two-dimensional analysis of the Navier-Stokes equa-
tions the opposite sign is, however, found for the regime
in question [22]. In fact, this is also true for the coeffi-
cient c¢; (see below) of the self-phase modulation. Soliton
perturbation theory appears therefore not to be adequate
in this regime. Even if a full, three-dimensional analysis
should reveal the correct sign, the CGL would still not be
able to account for the qualitatively different behavior of
HH and TT pairs, since the phase velocity, which defines
the head and the tail of the pulses, does not enter the
CGL.

In the present communication I study the extended
Ginzburg-Landau equations introduced earlier [15] and
focus on the interaction between pulse pairs. Using nu-
merical simulations I show that the additional concen-
tration mode characteristic of these equations can lead
to an interaction which depends on the orientation of the
pulses as observed in the experiments [6]: the enhanced
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local growth rate of the convective mode behind a pulse
can act as a bond within a TT pair. For HH pairs, how-
ever, the same mode leads to an increase in the repulsive
interaction.

As discussed previously the slow mass diffusion in lig-
uids necessitates the introduction of an additional (con-
centration) mode even for quite small convective ampli-
tudes [15,16]. A minimal model describing the effect of
the concentration mode on the buoyancy of the liquid
[9,10] is given by [15]

Ot A+ 50, A=dO2A + (a+ fC)A + c|A]2A
+plA[*A+g|B*PA+ -, (1)

0:B — $0,B = d*02B + (a* + f*C)B + ¢*|B|*B
+p"|B|*B + g*|APB + -, ()

8,C = §02C — aC + hy0,(JA|2 — |B) +--- . (3)

The complex amplitude of right- and left-traveling waves
is given by A and B, respectively. The additional, real
concentration mode C satisfies a diffusion equation with
damping and is advected by the waves. In general all
coefficients in (1) and (2) except for the group velocity
s are complex. Here I will, however, consider the sim-
plified case in which C affects only the growth rate of
A and B, i.e., f is assumed real as well. The general
case has been studied for short pulses in [18]. The lo-
calization of long pulses by the concentration mode has
been discussed in detail in [17] by investigating the in-
teraction between fronts (rather than pulses as is done in
the present communication). The crossover between long
and short pulses as well as their coexistence is addressed
in [19].

Figure 1 shows a typical situation of two widely sepa-
rated, essentially independent pulses. Their tails show
the characteristic positive C field which enhances the
growth rate of the respective convective amplitudes (f >
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FIG. 1. Typical pair of widely separated pulses traveling
to the left (B) and to the right (A), respectively. The solid
and the dotted curves give the real and imaginary parts of the
convective amplitudes of A and of B, respectively. Note that
the two pulses happen to have different phases; their magni-
tudes are the same. The dashed line gives the concentration
mode C. The parameters are given by d = 0.15+3, a = —0.24,
f=04,c=24+2i,g=-10,p = —1.65+ 2, a = 0.02,

= 0.25, and hy = 0.5.
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FIG. 2. Dependence of the distance D between the pulses
(solid lines) and of the drift velocity v of a single pulse (dashed
lines) on the group velocity s. Parameters are as in Fig. 1.

0). As discussed in detail previously [17,18] this can slow
down the pulse. It is reasonable to expect that for suffi-
ciently small distances between the pulses each pulse may
feel not only the contribution to C from itself but also
from the other pulse. This would lead to a further slow
down and could amount to an attractive interaction.

To investigate the possibility of such an attractive in-
teraction Egs. (1)—(3) are solved numerically with peri-
odic boundary conditions. Two pulses are placed in the
system and the group velocity is chosen such that they
collide with each other in a TT configuration, i.e., s is
chosen negative at first. Once they have reached a steady
state the equilibrium distance is measured as a function
of the group velocity. The results are shown in Fig. 2
ford = 015 +4, a = —024, f = 04, c = 2.4 + 2i,
g = —10, p = —1.65 + 27, « = 0.02, and hy, = 0.5. The
solid lines give the distance D between the pulses for two
values of the “diffusion” coefficient é of the concentration
mode. Note that to leading order § is due to differential
buoyancy and advection; at that order the diffusion of
the concentration field enters only the coefficient « [16].
The vertical arrows indicate the largest value s,,o. for
which a stable bound pair is still obtained. If s is in-
creased beyond $,,,, the pulses separate from each other
and D diverges. The crucial test for the existence of an
attractive interaction is a comparison of s,,,, with the
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FIG. 3. Typical pair of stably bound pulses. The local
growth rate is greatly enhanced between the pulses due to the
accumulation of the concentration mode C (dashed line). This
effectively binds the pulses together. The solid and the dotted
curves give the real and imaginary parts of the convective
amplitudes A and B, respectively. Parameters are as in Fig. 1.
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value s for which the drift velocity v of a single pulse
becomes positive, i.e., the value sy for which the pulses
would separate in the absence of any interaction. The
numerically determined velocity of single pulses is given
by the dashed lines. Clearly, it becomes positive well
before $,,q-. Thus there is a finite range of parameters
between sp and s,,., in which the concentration mode
acts as a bond which pulls the pulses together.

A typical bound pulse pair is shown in Fig. 3. It is
characterized by a C field which is strongly enhanced
between the pulses as compared to the widely separated
case shown in Fig. 1 (note that the scales are different
in Fig. 1 and Fig. 3). This does not occur for HH pairs.
To the contrary, there the concentration mode enhances
the repulsive interaction which is already present due to
the suppressing cross-coupling term proportional to g in
(1) and (2). Thus, within the ECGL a clear distinction
exists between HH pairs and pairs of the TT type.

In conclusion, I have demonstrated that the attractive
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interaction between certain pulses observed experimen-
tally [6] can be explained naturally if the concentration
mode is taken into account. The latter also accounts for
the observed dependence of the interaction on the rel-
ative orientation of the pulses. The standard complex
Ginzburg-Landau equation does not capture these phe-
nomena.

It would be interesting to study also the dynamics of
collisions of pulses within the extended Ginzburg-Landau
equations and compare them with results for the stan-
dard CGL [23]. In the experiments a drastic collapse
of the TT pair is reported when the pulses are pushed
together too strongly [6].
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